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Abstract. We use an unrestricted self-camistent mean-fietd approach to the onedimensional 
periodic Hubbard model to study its ground-state phase diag". Our approach allows one to 
incorporate spin and electron correlations as we11 85 spin and charge fluctuations. We find that a 
homogeneous antifemmangetic state exists only at half-filling, where the state is also insulating. 
Off half-filling, it was found that the ground state of the Hubbard model consists of clusters with 
different magnetic and charge properties. For certain values of the panmeters of the system 
the cluster formation develops to a full phase separation. The effects of the intersite repulsive 
or attractive interaction on the ground-state properties were aIso examhed. Implications of our 
results for the existence of a superconducting ground state as well as comparison with other 
studies will be briefly discussed. 

1. Introduction 

One of the main problems in the field of high-?', superconductivity is the understanding 
of its microscopic mechanisms. Most of the proposed mechanisms are discussed in the 
context of theoretical models which employ certain rather drastic approximations. Among 
these models, the Hubbard [ 11 model and the related t-J model [2] have received special 
attention in view of the strong electron-electron correlations in high-T, superconductors 
and in related campounds 131. Nonetheless and despite strong theoretical effarts during the 
last few years, many fundamentd aspects of the solution of the Hubbard model still remain 
unclear, especially in the ca5e o€ the two-dimensional (ZD) t4-ij] and three-dimensional 
(3D) systems. For these systems the problems of negIecting charge and spin correlations 
as well as charge and spin fluctuations from the soIutions of the Hubbard model become 
more pronounced in the description of the 1" = 0 phase diagram of the Hubbard model 
which remains stiI1 not clear. Recent work on the r-J model indicated that a phase- 
separated [7] state is a possible ground state of this model when the parameters are in a 
certain range. Indications for phase separation were aIso found by us [SI in the Hubbad 
model using the correlated random field approximation (CRFA) and the conditional coherent 
potential approximation (CPA) using a Bethe lattice description of our system €or which 
simple analytic expressions for the Green functions exist [ 121. 

The recent interest in a possible phase separation in the Hubbard model and its 
implication for the relevance of the latter to the high-T, superconductivity made us undertake 
a systematic re-examination of the phase diagram at T = 0 including effects due to magnetic 
and charge correIations. 
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In the present work in order to check our results that we obtained within the CRFA 
and the conditional CPA further and in order to study more carehIly the effects of charge 
and spin correlations and fluctuations on the ground system of the system, we examine the 
one-dimensional (ID> periodic Hubbard model in an unrestricted self-consistent mean-field 
approximation (MFA). Our results are compared with corresponding data for the ID Hubbard 
model obtained within the Bethe lattice description and the CRFA and the conditional CPA 
[8,11,13]. Both resuits are shown on a magnetic phase diagram (figure 6 below) and, as 
will be demonstrated, they are mutually supportive; both modei descriptions indicate areas 
of the phase diagram where the ground state of the system favours phase separation. 

Recently, on the basis of the exact solution obtained by Lieb and Wu 1141, several 
workers 115-171 have obtained exact results for the correlation functions in the 1D Hubbard 
model. According to these results the ground state has zero total magnetic moment with 
short-range antiferromagnetic (AF)  and charge correlations, Xn spite of the existence of these 
exact results, our MFA is instructive and meaningful, because it allows us to obtain a more 
direct physical picture of the many-body correlations, whife at the same time it determines 
the limitations of the MFA under the extreme conditions of the one-dimensionality. This puts 
the MFA on a firmer basis in two and three dimensions, where no exact results are available. 
The general tendency of the mean-field theories to be independent of the dimensionality (at 
the qualitative level) is reinforced in the present case where the results of the CRFA for the 
3~ Hubbard model are qualitatively similar to the results of the MFA in the ID case. 

2. Formalism 

We have employed the one-band Hubbard Hamiltonian 

where the sites (i) form a periodic lartice, Q is taken to be + I  for spin up and -1 for spin 
down; c0 is a constant which can be taken as zero, Vij is the transfer integral which is 
taken to be a constant V when i, j are nearest neighbours and zero otherwise, U is the on- 
site Coulomb repulsion and ain = rrLajb with a:, qa being the creation and annihilation 
operators, respectively. Finally, U1 describes the intersite Coulomb interactions which in 
our case is limited to only nearest neighbours. The physjcal parameters of the model are 

(i) the ratios U /  V and U1 / V, 
(ii) the average number n of electrons per lattice site and 
(iii) the type of lattice. 

Owing to particle-hole symmetry, one obtains' identical results for n and 2 - R.  Thus we 
can restrict ourselves to the range 0 < n < 1. 

Our approximation is based on Hubbard's original suggestion according to which the 
cumbersome many-body U-term of equation (1) i s  replaced by a random one-body term, 
i.e. 

Uni,ni-, z (2) 

where are correlated random variables, the distribution of which is determined self- 
consistently. With this approximation, equation (1) is decoupld to onespin Hamiltonians 
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where 

~ i o  = €0 f UIni-u) + ui((ni-~)+ (ni+l)). (4) 

Our self-consistent MFA to the LD periodic Hubhard system can include both charge and 
spin fluctuations and correIations by aHowing the system to evolve from an arbitrary set 
of initid input parameters towards a self-consistent solution. We employ an (approximate) 
periodic supercell arrangement and choose the number n of electrons per lattice site in 
such a way as to allow a number M of electrons to be distributed over the N sites of 
the unit supercell ( M / N  = n -= 1). When M is chosen to be an integer, it is noted that 
such an artificially imposed periodicity with an integer M favours a Peierk instability and 
a lowering of the total energy, We have also relaxed this restriction of integer M on n 
without any qualitative change. Within each unit supercell the spin and charge fluctuations 
are unrestricted and are determined self-consistently with our MFA described by equations 
(344). 

The solution of the Hamiltonian H, will provide the eIectron numbers (aiu), i = 
1 , * .  . , N, €or the N sites of the unit supercell, in terms of a given set of electron numbers 
{rz[-#} of the opposite spin --6. The calculated electron numbers (ni,) are subsequently 
used to solve H-, (given by equations (3) and (4)) by replacing U by --d from which a 
new set of (ni-,) is obtained. This set is used as input to equation (3) and H, is solved 
again to obtain the new @in}. The whole procedure is repeated until self-consistency with 
respect to the sets (nikc> is achieved. This self-consistency is equivalent to an extremum 
of the total energy of the system. In the case of multiple solutions the one with the Iower 
total energy is chosen. 

Our calculational procedure employs the periodicity of the supercell structure to solve 

H,jkva) = EkUUlkUQ) (5) 
by expanding lkua} as 

where U denotes the band index. Using Bloch's theorem ( c , + ~ , ~ ~  = cjuu exp(ikNd), where 
d is the lattice constant), and substituting equation (6) into (5) we obtain the following 
(N x N) marrix equation: 

tirl, - Ekur7)Ykvn = 0 (71 

where the matrix elements Hijo of H, are 

and the components yf;# of the solution vector ykw are the expansion constants q,, . 
The diagonalization of Hijd is performed for various k-points belonging to the first 

Brillouin zone of the Iattice. The number of k-points (which in our case is 300) is specified 
by the required accuracy in the k-integrations which are necessary for obtaining the (nikc}. 
In particular, for each k-vector we calculate the Green function 
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Having obtained Gk,(E) we can find the electron density of states (DOS), denoted by 
@,(E) :  

The maximum number of occupied electron bands and the Fermi energy Ep of the system 
is specified from the condition 

which is imposed by the given average number n of electrons per lattice site. Finally, 

The magnetic moment pi per lattice site and the electron density ni per lattice site can be 
obtained from the expressions 

while the energy of the system per lattice site is obtained from the expression 

assuming that ED = 0. 

3. The ground state for the ID periodic lattice 

The main qualitative features of our results for the 1D periodic lattice are indicated in figure 1 
where we show the configuration of the lowest-energy state of a system with N = 6 and 
n = €or U1 = 0 and various values of U / B  (B being the half-band width, i.e. B = 2V 
for the I D  case). On the left of the figure we show the magnetic moments pi, i = 1, . . . , N 
and on the right we show the number ni of eIectrons per lattice site as caIcuIated according 
to equations (13) and (14). For not so high values of U/B we have found that the lowest- 
energy configuration exhibits a tendency to develop clusters of ferromagnetic (F) and AP 
order within the unit cell as shown in figure 1. This type of state that exhibits such clustering 
features is named a cluster state IC state). As U / B  increases, the c state with the lowest 
energy still exhibits F-AF clustering but now the F cluster has grown larger at the expense of 
the AF cluster. For much larger U/B-values the lowest-energy state of the system exhibits 
F order all over the unit cell. It must be pointed out that the MFA tends to overestimate the 
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Figure I. The ground-state values for the magnetic 
moments pi (left-hand side) and the electron numbers nj 
[right-hand side) at each site i of the unit cell (confined 
between the vertical dashed lines) of n [D periodic Hubbard 
system with N = 6, n = 2, U1 = 0 and various values of 
UjB: (U) U/B = 2.5; (b) U/S = 4.0; (c) U/3 = 7.5. 

Figure 2. Variation with U/B in the deviations 
6n (-) and 6p [- --) defined according to 
eqU3tiOnS (24) and (25). respeclively, for a ID 

periodic H u b W  system with N = 6, n = 2 and 
U1 = 0. 

F correlations compared with the exact resuIts which do not produce even medium-range P 
order. 

In figure I it is also observed that the number of electrons per lattice site exhibits a 
substantial fluctuation {charge fluctuation) from site to site. A quantitative picture of this 
fluctuation can be obtained by calcuIating the deviation Sn of the number ni of electrons 
relative to its mean value: 

A similar expression for the deviation &x for the magnetic moments is,obtained from the 
formula 

where lpl is the average absolute value of the pi.  
In figure 2 we show the V a t k d Q I I  in 8n and 6p, as u/B varies for a syskm of N = 6, 

n = 2 and U1 = 0. It is observed that both 6n and 6p exhibit a maximum as U / B  increases 
and then they drop off slowly and become zero at very large U / B  where the system attains 
the F state. It is worth noting that the charge fluctuations shown in figure 1 are distributed in 
such a way within the unit celI that the excess charge is associated with the AF cluster while 
the lower charge density is associated with the F cluster. In figure 3 we show the cdculated 
variation in ] p \  with U / B  €or the system described by N = 6, n = $ and UI = 0. As 
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expected, the magnetic moment is shown to saturate to the value = n as U/B increases. 
Finally, in figure 4 we show the calculated energy band structure of the system described 
by N = 6, n = 2 and U1 = 0. Since for such a system M is taken to be an integer, the 
Fermi energy i s  found, as expected, to be located in an energy gap as shown by an m o w  
in figure 4. Note the narrowness of the bands and the large magnitude of some gaps, in 
spite of the fact that the value of U / B  is not so Iarge. 

P.0 I 

:I ,I, , , , , I 
mo 2 4 6 8 

ui5 
Figurc 3. Variation with U/B in the mean absolute 
value of the magnetic moment per lattice site for a 
ID periodic Hubbard system with H = 6, n $ and 
UI = 0. 

-I.* t .i I 
-ID 0.0 1.0 

Figure 4. The lower energy bands (in units of f B )  
of up- and down-spin-electron states for a ID periodic 
Hubbard system with N = 6. n = 5, U/B = 2.5 and 
U1 = 0. The m o w  indicates the position of the Fermi 
level. me neaml-neighbour distance was talcen to be 
equal to 4.0 au.) 

In order to check the e f f ~ t  of the size of the cluster upon the ground state of the system 
we have performed calculations in a system with N = 12 and n = 2. For this system we 
have found that for values of U / B  (and U1 = 0) which are not so large, the ground state 
of the system is the one that we have found for the equivalent system with N = 6 and 
n = i. However, for larger values of U / B  we have found that the system with the larger 
unit cell (N = 12) favours a new ground-state configuration for which in the first half of 
the unit cell the magnetic moments exhibil AF order while in the other half of the unit cell 
the magnetic moments exhibit F order. This meam that, as U / 3  increases, the size of the 
local F and AF clusters increases and thus it seems that the system approaches continuously 
a phase-separated state, i.e. a state that results from a mixing of macroscopic domains each 
of which being at a particular phase chosen out of two pre-defined domains (in this example 
the F and AF phases). These results, although indicative of real tendencies in 2D and 3D 
systems, do not agree with the exact results in  ID systems. 

Similar results were found for the ground state of the 1D periodic lattice with other 
values of n. In particular, we have studied also the cases of ID lattices with Ut = U and 

4 (i) N = 6 and n = 5 
(i i)  N = 5 and n = $ 
(iii) N = 6 and n = 0.90 and 
(iv) N = 6 and n =0.95. 
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Cases (i) and (ii) correspond to an integer M-value as in the case described previously 
with N = 6, n = and 111 = 0. These three cases favour the Peierls transition and exhibit 
the same qualitative picture for their ground state. The other two cases, namely (iii) and 
(iv), do not favour the Peierls transition. Their ground state exhibits the C state found for 
the systems which favour’the Peierls transition even for large values of U/B, being closer 
(than the integer M cases) to the exact results. 

The stability of the C-type ground state was checked by plotting the total energy kiven 
by equation (15)) as a function of the electron number n for various values of U/B. As 
shown in figure 5, the function E = E(n)  exhibits a clearly concave pa% i.e. an indication 
khat the system may be found in a phase-separated state between the C state on the one hand 
and the AF state on the other, 

0-5 0.6 , 0-7 0.8 0.9 I O  

R 

Figure 5. Energy (in units 
of 4 ~ )  versus n plots for 
a LD Hubbard system with 
N = 6 and U I  = 0. The 
full curved line describes the 
variation in the energy of 
the F s-. The full and 
broken sbaight lines describe 
the variation in the PS. and 
PS‘ states, respectively for the 
indicated values of U/B. The 
variation in the energy of the 
c state is indicated by the full 
triangles for U/B = 3.5, by 
the full circles for U / B  = 2.5 
and by the crosses for U / B  = 
2.0. 

In figure 5, two families of straight lines describe the energy variation of two different 
phase-separated states. The full straight lines indicate the energy of a phase-separated state, 
denoted PS, which results from a mixing of distinctive macroscopic domains which exhibit 
either F or AF order. On the other hand, the broken stmight lines in figure 5 indicate 
the energy variation of a different phase-separated state, denoted PS’, which results from a 
mixing of distinctive macroscopic domains which exhibit either AF order or the c state. B 
is worth noting that the PS’ state appears to be energetically more favoured than the PS state 
for n > 0.70 and for sufficiently low values of U/B (less than 5.0). 

For each value of U / B  we have compared the energy of the PS and PS’ states with 
the energy of the c state {obtained according to equations (5)415)) .  The various physical 
quantities of the system that we have calculated correspond to the lowest-energy state 



4512 A N Andriotk et a1 

including the Ps and the PS’ states. Thus in figure 2 for U/B > 4.8 the values of 6n and 13p 
have been calculated within the PS state. In the same way we have calculated the variation 
in 

In table 1 we show the results for Ip1, Sn and 6p obtained for the ground state of 
systems of various n at a particular value of O/B and 111 = 0. It is quite interesting to note 
the maximum which appears in the variation in 6n and 6 p  when considered as functions of 
n for constant values of U/B and Ul/B.  

with U/B shown in  figure 3. 

Table 1. The avenge absolute value of the magnetic moment p per laitice site and the deviations 
Sp and 6n for ID periodic Hubbard systems with the same intrasite interaction U/B = 4.0 and 
intersite interaction U1 = 0 but with different average values of electrons per unit cell. 

n lPi &n 8P 

0.634 0.071 0.058 4 0.774 0.172 0.141 
2 0.784 0.172 0.158 
0.9 0.855 0.104 0.085 

4. Phase diagram of the 11) (periodic) Hubbard modei 

The results for the ground state of the 10 Hubbard model found in the previous section can 
be compared with the results obtained within the CRFA and the conditional CPA described 
elsewhere [8,13]. In figure 6 we present a diagram for the magnetic phases of the I D  
Hubbard model obtained using both methods, namely the method presented in section 2 and 
the CRFA and the conditional CPA. As in the 3D case [ 131, the phase diagram of the 1D lattice 
exhibits the paramagnetic (P), the F, the c and the Ps and ps’ regions. The PS phase consists 
of F and A F  domains; the PS’ consists of AF and C-type domains. (The spin-glass or the 
spin-liquid phase of the 3D case corresponds to the c state of the I D  state.) The AF region 
in the I D  case was found only for ta = 1. In figure 6 we observe that the c and ps’ states 
are favoured for relatively small values of U / B  (< 5.0) the former being preferabIe for 
0.55 < n < 0.80 and the latter being preferable in systems with n 2 0.80. For U/B > 5-0 
the PS and PS’ states seem to coincide. This means that the full and the broken straight Iines 
in figure 5 merge together within our calculation errors. For even larger U/B-values the 
system finally attains the F state, It must be stressed once again that the exact ID resuits 
show a unique phase over the whole n-U plane, Thus our results are indicative of the short- 
and medium-range correlations that may appear in the ground state of 2D and 3D system. 

The above results are in complete analogy with the recent caIculations of Marder et 
al [7] who employed a MFA based on a suitable 1 / N  expansion. In particular, Marder et 
ut‘ 171 predict that €or low U/B-values the ground state of the system can be a FS state, 
consisting of one AF domain and another exhibiting what they call the ‘canted‘ state. Our 
calculated C states are in fact analogous to their ‘canted’ states within our Ising-model-type 
approximation. 

To obtain an idea of what are the energy differences as one moves from one phase to 
another, we show in  figure 7 a particular case which has N = 6 and n = i, while U/B 
varies. 

Comparing figure 2 of [ 131 and the present figure 6, we see another difference between 
the results for the 3t1 case and the results for the rn case. In the region where U/B -+ 0 
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Figure 6. The phase diagram of a 11) 
Hubbkd system obtained by firstly the CRFA 

and the conditional CPA a.% applied on L Bethe 
lattice of connectivity K = 1 and (secondly 
the unr&cted self-consistent MFA to the ID 
periodic Hubbard system. In addition to 
he P and F phases, a c state appears for 
0.6 6 n < 035 and for 2.0 g U f B  G 5.0. 
;IS well as two phase-sepxated states; the 
ps state for U/B 2 3.5 which consists of F 

and AF macroscopic domains and the Ps’ state 
which appears for O/B < 5.0 and consists 
Of AF and C-type domains. 

- 0.2 c i  

-0.8 I 
2 5  5.0 7.5 

U/B 
Figure 7. The e n o w  versus U / B  diagmm for R = $ for a ID 
periodic Hubbard system with N = 6 and U1 = 0. The energy of 
the c, PS and Ps‘ slates are indicated by the curves labelled Ec. Ep5 
and Epy, respectively; the lines labelled Epan and E F ~  indicate 
the energy variation in Ute e and F states respectively. The energies 
are given in units of &B. 

and n 0, in the 3~ case the p phase always has a lower energy than all the other phases. 
On the other hand in the !D case, the P phase becomes unstable when n 4 0 for U/B 
small but finite. This difference is due to the dimensionality which in the ID case causes 
the DOS to be proportional to (8E)-1/2, while in the 3D case it is proportional to (SE)’12 
at the band edge, As a result of this, the line separating the P phase from the F phase is 
given by U / B  oc n and U / B  cy n-’P for the ID and 3D cases, respectively. On the other 
hand, €or n -3 1, both the ID and the 3~ systems exhibit the same qualitative picture as 
one can easily observe by comparing figure 2 of E131 and the present figure 6. This part of 
the phase diagram is the most interesting as this is directly related to systems of extreme 
practical interest, e.g. low-doped high-T, superconductors. 

5. The effect of the Entersite Coulomb interactions 

In this section we shall present results refeming to the study of the effect of the intersite 
Coulomb interactions. This is achieved by allowing U! to be different from zero in equations 



(I}, (3) and (S>-{ 15). We restrict ourselves to the system with N = 6, R = 2 and U / B  = 2.5. 
In this study, U l / B  was varied from -0.7 to 4-1.2 so as to include effective attractive and 
repulsive interactions. For this range of the intersite Coulomb interactions the ground-state 
configuration was found to have the same FAF clustering as in the case where U l / B  = 0. 
For values of U,/ B 1.2 it was found that the ground state exhibits large charge fluctuations 
from site to site. For U I / B  in the range from -0.7 to +1.2 the effect of the Ill-term on 
the ground state is shown better in figures 8-10 where various quantities are plotted as 
functions of U l / B .  In particular, figures 8 and 9 show the variation in the deviations 
6n and 6,u, respectively, calculated according to equations (16) and (17). It is observed 
that Bn exhibits a minimum at a non-zero value of U l / B  ( U t / B  N 0.3). In contrast, the 
minimum of 8f i  is found for U, / B  = 0.0. These results indicate that the intersite Coulomb 
interactions pIay a rather complicated and unexpected role in the development of charge and 
spin fluctuations. Finaily figure 10 indicates the variation in the mean (absolute) value 
of the magnetic moment per lattice site as U I / B  changes. From this figure it is noted that, 
as U l / B  increases, 1 ~ 1  decreases. This indicates that, as far as lpl is concerned, increased 
intersite Coulomb interactions reduce effectively the role of the U/B-term. Similarly, it is 
observed from figure 8 that, for constant U / B  = 2.5, an increase in U l / B  resuIts initiaIly 
in a decrease in 6n. This is in fact expected from the results shown in figure 2 according to 
which a reduction in U / B  leads to a reduction in 6n and Bp. However, as U I / B  increases, 
the picture changes and it is observed that a iarge U1lB-term favours large fluctuations 
in n and p. These observations lead us to conclude that the exact interplay between the 
U/& and the U , ' ~ / B - k r m s  needs further study in order to be established. Finally it is  noted 
that the R uctuation Sw does not seem to change with small (attractive or repulsive) intersite 
Couhnb interactions. However, fur sufficiently large U r / B  the variation in dp fdlows that 
of 6n. 
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Figurr 9. The deviation 8p (given by equation (17)) 
as a function of the intersite interaction U1/3 for a 
i~,periodic Hubbard system with N = 6, n = and 
U J B  -- 2 5 .  
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Figure 10. The avenge absolute value of the magnetic 
moment per lattice site as a function of the intersite 
interaction U1/3 for a ID periodic Hubbard system with 
N = 6 , n  = ;md U / E  = 2.5. 

6. Estimation of the coupIing constant J of an equivalent Ising model 

Within the self-consistent MFA for the 10 Hubbard model it is possible to estimate the 
coupling constants Jij  of an equivalent Ising model. To do this we use the results for the 
nia, i = 1,- . . , N, for both spins Q as obtained from our seIf-consistent solutions. Then we 
reverse the spin populations of one particular site j .  In other words, nj0 is taken to be n,-, 
and t t j - 0  is taken to be njd,  i.e. we flip the local moment at j .  This set of he ni, which 
indudes the reversed spin populations of the j t h  site is used as an input to equation (7). 
From its solution we obtain the band-structure term which contributes to the total energy 
given by equation (15). The change A,?$’ in the total energy associated with the reversal 
of the spin of the j th  site is related to the constants Jj*l of an equivalent Ising model with 
only nearest-neighbour couplings by the relation 

with A E f )  defined as (for U ,  = 0) 

I 

A E ~ )  = - 

where the prime indicates that the summation refers to the system with one spin flipped 
over at site j .  

We proceed next by calculating AE(j+’]  which is 

Then we find the energy change A E ~ ” ” )  associated with the reversal of the spins at 
sites j and j + I :  

AEf’”’) = 2 J j i 1 , j  + 2Jj+*,j+l.  (21) 

From equations (IS), (20) and (21) we have 
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Table 2. Calculated coupling con~tants J, j  (in units of 4s) of a I D  periodic Hubbard system 
described by N = 6. n = a ,  UI = 0 and U I B  = 2.5. The small negative values indicate 
instability of the ground state. 

512 Jz3 J34 145 156 16 I 

0.0236 -0,0040 0.0263 0.0112 0.0387 -0.0013 

The determination of one J;.;+l allows us to find all the others if the energy changes AEf’, 
j = I  . . . . ,  Nareknown.  

In table 2 we present the results of the Ji;-values for a system with N = 6, n 2% 
UI = 0 and U / B  = 2.5 obtained according to equations (18H22). 

The validity of equation (22) relies on the basic assumption that the reversal of one 
spin affects only the bonds of the nearest neighbours. Such an assumption can be easily 
checked within the present scheme as follows. We calculate the coupling constants Jij 
starting from two different pairs ( j ,  j + 1) and compare the two sets of the constants J i j  

which are obtained. Such a comparison has been done and has shown that, at least for some 
values of the parameters, the assumption used to derive equation (22) is not valid and one 
has to include interactions between second-nearest neighbours. Thus the values given in 
table 2 do not describe accurately the magnetic couplings in the system. 

On the other hand, the calculation of J-values allowed us to check the stability of the 
ground-state configurations described in section 3 and helped us to determine the ground- 
state configuration with the lowest energy for a given set of the parameters of the system. 
In other words we have observed that a negative or very small AEf)-value indicates that 
the process of spin flipping which we had allowed the system to undergo leads to a stabler 
ground-state configuration compared with the configuration that we had started with. Thus 
the spin-flipping process could lead us to the determination of an energetically more favoured 
configuration, a procedure that we follow in our calculations. Furthermore, the coexistence 
of large Jij  as well as small (almost zero) Jij indicate that our cluster state is a mixture 
of spin-glass as well as spin-liquid character. Finally negative or very small J -values are 
indicative that the MFA is becoming unreliable. This is important because it shows that our 
MFA provides clear signs where its limits of validity are approached. 

7. Conclusions 

In the present work we studied the effects of spin and charge correlations as well as 
the effects of spin and charge fluctuations on the ground state of the Hubbard model by 
employing an unrestricted self-consistent MFA to the ID periodic Hubbard model. It was 
found that for a certain range of the values of the parameters of the system the ground state 
of the Hubbard model favours cluster formation consisting of higher-charge ‘AF’ domains 
and lower-charge F regions. For a certain range of values of our parameters the clusters 
become larger and larger and eventually drives the system to full phase separation. In the 
phase-separated state, the system consists of macroscopic domains which exhibit a well 
defined phase. According to our findings a phase-separated state (denoted by Ps) was found 
to consist of F and AF domains and to be favoured in systems with large values of U/B. 
Another phase-separated state (denoted by PS’) was found in systems of relatively low V I E -  
values and was found to consist of domains which exhibit the AF or the c state. The main 
characteristic of the c state is that at this state the tendency for phase separation is developed 
locally within a microscopic region. In one part of this region the electrons exhibit F order 
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while in the rest of the region the electrons exhibit AF order. For certain values of the 
number of electrons per lattice site, it was found that, as U increases, the F cluster of the 
local phase-separated state increases at the expense of the AF cluster. For further increase in 
U the system attains either directly the F phase or passes firstly through a phase-separated 
state before it becomes a ferromagnet. It was also found that this picture does not change 
substantially either with the size of the artificial unit supercell or with small moderate 
changes in the value of the intersite (nearest-neighbour) repulsive or attractive interactions. 

The model cases that we studied included systems with unit supercells having N < 12. 
Analysing our results we observed that by increasing N, i.e. by considering systems with 
larger unit cells, we find an increasing number of lowest-lying states that exhibit spin 
configurations which differ very little in energy from each other. This observation makes 
clear that, as N increases, it will become prohibitively expensive, if possible at all, to obtain 
computationally a unique ground-state configuration of the system. This problem was found 
to become more and more pronounced as U f B increases. Similar findings were recently 
reported for the ZD systems by Inui and Littlewood [18]. 

It must be pointed out that our method, although quite sophisticated, omits quantum 
fluctuations which may drive the system to different ground states. This was shown by 
recent theoretical and numerical investigations [ 15-17] on the exact spin-spin correlations 
of the ID Hubbard and the t-J models which indicated that for such systems the ground state 
is of a short-range AF nature. The picture that emerges from these exact ID considerations 
indicates the effect of neglecting quantum fluctuations and the limitations of the MFA which 
adopt such an approximation. However, in systems of higher dimensionality (ZD and 3D 
systems), one might expect the effect of quantum fluctuations not to be strong enough (as 
in the ID case) to overcome the short-range order clustering effects and therefore this may 
allow the system to attain a PS' ground state. 

Having clarified that our unrestricted Hartree results are more relevant for the 2D 
or 30 cases than for the ID case for which they were obtained, we discuss now their 
relevance to high-T, superconductivity. The existence of appreciable values of charge 
fluctuation Sn allows the possibility, when quantum fluctuations are taken into account, of 
a superconducting state. Indeed, quantum fluctuations either may stabilize the system to a 
charge-density state (as the mean field shows) or may drive it to a superconducting state 
if the charge fluctuations move through the system in a correlated way. In fact, in the 
ZD case, local clusters of charges can easily move around collectively, indicating that the 
possibility of superconductivity is favoured in higher dimensionality. On the basis of our 
results, superconductivity may appear for relatively large values of U / B  (larger than 1.5) 
and values of n close to unity (in order to prevent an easy spin-flip scattering of the electron 
pair by the local moments, which for n close to unity exhibit strong AF coupling). Note 
that a relatively large intersite repulsive interaction may further enhance the possiblity of 
superconductivity. It is worthwhile to note that our calculation indicates a rather strong 
indirect hole-hole attraction; we estimated this effective attraction by finding the value of 
an attractive on-site U ,  which will give us the same value of Sn. We found a surprisingly 
strong U f B -2, more than enough to provide strong hole-hole binding. 

Regarding the question of phase separation we expect that long-range Coulomb forces 
will prevent its occurrence, unless one assumes macroscopic or mesoscopic inhomogeneities 
in the specimen which are related to variations in the local concentration of oxygen. 
However, microscopic clusters of the type found in the c state are expected to survive 
the long-range Coulomb forces. It is worth pointing out that the c state has characteristics 
of a spin-glass and spin-liquid phase (the former is associated with regions of relatively 
high magnetic couplings while the latter with very small (or even negative) J-values). In 
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view of this, a marginal Fermi liquid behaviour cannot be considered as inconsistent with 
our findings. 

Finally, we point out that our calculations strongly indicate that, if a superconducting 
state will be established, it will coexist with strong AF magnetic order. 
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